Giải bài tập Đại Số lớp 9 Chương 3 Bài 6: Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)

Giải bài tập Đại Số lớp 9 Chương 3 Bài 6: Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)

Giải bài tập Đại Số lớp 9 Chương 3 Bài 6: Giải bài toán bằng cách lập hệ phương trình (Tiếp theo) – Dethithu.online xin giới thiệu tới các em học sinh cùng quý phụ huynh Giải bài tập Đại Số lớp 9 Chương 3 Bài 6: Giải bài toán bằng cách lập hệ phương trình (Tiếp theo) để tham khảo chuẩn bị tốt cho bài giảng học kì mới sắp tới đây của mình. Mời các em tham khảo.

Giải bài tập Đại Số lớp 9 Chương 3 Bài 6: Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)

Giải bài tập Đại Số lớp 9 Chương 3 Bài 6: Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)

Hướng dẫn giải bài tập lớp 9 Bài 6: Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)

  1. Tính độ dài hai cạnh góc vuông của một tam giác vuông, biết rằng nếu tang mỗi cạnh lên 3 cm thì diện tích tam giác đó sẽ tăng them 36 cm2, và nếu một cạnh giảm đi 2cm, cạnh kia giảm đi 4 cm thì diện tích của tam giác giảm đi 26 cm2

Bài giải:

Gọi x (cm), y (cm) là độ dài hai cạnh góc vuông của tam giác vuông. Điều kiện x > 0, y > 0.

 

 

Tăng mỗi cạnh lên 3 cm thì diện tích tăng them 36 cm2 nên ta được:

=  + 36

Một cạnh giảm 2 cm, cạnh kia giảm 4 cm thì diện tích của tam giác giảm 36 cm2 nên ta được

=  – 26

Ta có hệ phương trình

Giải ra ta được nghiệm x = 9; y = 12.

Vậy độ dài hai cạnh góc vuông là 9 cm, 12 cm.

  1. Hai vòi nước cùng chảy vào một bể nước cạn (không có nước) thì sau giờ đầy bể. Nếu lúc đầu chỉ mở vòi thứ nhất và 9 giờ sau mới mở them vòi thứ hai thì sau giờ nữa mới đầy bể. Hỏi nếu ngay từ đầu chỉ mở vòi thứ hai thì sau bao lâu mới đầy bể ?

Bài giải:

Gọi x (giờ) là thời gian để vòi thứ nhất chảy đầy bể (x > 0).

y (giờ) là thời gian để vòi thứ hai chảy đầy bể (y > 0).

Trong 1 giờ vòi thứ nhất chảy được  bể, vòi thứ hai chảy được  bể.

Cả hai vòi cùng chảy thì bể đầy sau  giờ =  giờ nên trong 1 giờ cả hai vòi cùng chảy được  bể.

Ta được:  +  =

Trong 9 giờ cả hai vòi chảy được  bể.

Trong  giờ cả hai vòi chảy được (  + ) bể.

  1. Hai người thợ cùng làm một công việc trong 16 giờ thì xong. Nếu người thứ nhất làm 3 giờ và người thứ hai làm 6 giờ thì chỉ hoàn thành được 25% công việc. Hỏi nếu làm riêng thì mỗi người hoàn thành công việc đó trong bao lâu ?

Bài giải:

Giả sử nếu làm riêng thì người thứ nhất hoàn thành công việc  trong x giờ, người thứ hai trong y giờ. Điều kiện x > 0, y > 0.

Trong 1 giờ người thứ nhất làm được  công việc, người thứ hai  công việc, cả hai người cùng làm chung thì được  công việc.

Ta được  +  = .

Trong 3 giờ, người thứ nhất làm được  công việc, trong 6 giờ người thứ hai làm được  công việc, cả hai người làm được 25% công việc hay  công việc.

Ta được  +  =

Ta có hệ phương trình: .

Giải ra ta được x = 24, y = 48.

Vậy người thứ nhất 24 giờ, người thứ hai 48 giờ.

  1. Nhà Lan có một mảnh vườn trồng rau cải bắp. Vườn được đánh thành nhiều luống, mỗi luống trồng cùng một số cây cải bắp. Lan tính rằng: Nếu tăng thêm 8 luống rau, nhưng mỗi luống trồng tăng thêm 2 cây thì số rau toàn vườn sẽ tăng thêm 32 cây. Hỏi vườn nhà Lan trồng bao nhiêu cây rau cải bắp ?

Bài giải:
Gọi x là số luống rau, y là số cây của mỗi luống. Điều kiện x > 0, y > 0. Tăng 8 luống, mỗi luống ít hơn 3 cây thì số cây toàn vườn ít đi 54 cây, ta được:

(x + 8)(y – 3) = xy – 54

Giảm 4 luống mỗi luống tăng thêm 2 cây thì số cây toàn vườn tăng 32 cây, nên ta được: (x – 4)(y + 2) = xy + 32

Ta được hệ phương trình:

Giải ra ta được: x = 50, y = 15

Số cây rau cải bắp nhà Lan trồng: 50 . 15 = 750 (cây)

Giải bài tập Đại Số lớp 9 Chương 3 Bài 6: Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)