Giải bài tập Hình Học lớp 10 Chương 3 Bài 2: Phương trình đường tròn
Giải bài tập Hình Học lớp 10 Chương 3 Bài 2: Phương trình đường tròn – Dethithu.online xin giới thiệu tới các em học sinh cùng quý phụ huynh Giải bài tập Hình Học lớp 10 Chương 3 Bài 2: Phương trình đường tròn để tham khảo chuẩn bị tốt cho bài giảng học kì mới sắp tới đây của mình. Mời các em tham khảo.
Giải bài tập Hình Học lớp 10 Chương 3 Bài 2: Phương trình đường tròn
Giải bài tập Hình Học lớp 10 Chương 3 Bài 2: Phương trình đường tròn
Hướng dẫn giải bài tập lớp 10 Bài 2: Phương trình đường tròn
- KIẾN THỨC CƠ BẢN
1.Lập phương trình đường tròn có tâm và bán kính cho trước
Phương trình đường tròn có tâm I(a; b), bán kính R là :
(x –a)2 + (y – b)2 = R2
- Nhận xét
Phương trình đường tròn (x – a)2 + (y – b)2 = R2 có thể được viết dưới dạng
x2+ y2 – 2ax – 2by + c = 0
trong đó c = a2 + b2 + R2
Ngược lại, phương trình x2+ y2– 2ax – 2by + c = 0 là phương trình của đường tròn (C) khi và chỉ khi a2 + b2 -c > 0. Khi đó đường tròn (C) có tâm I(a; b) và bán kính R =
3.Phương trình tiếp tuyến của đường tròn
Cho điểm M0(x0 ;y0) nằm trên đường tròn (C) tâm I(a; b).Gọi ∆ là tiếp tuyến với (C) tại M0
Ta có M0 thuộc ∆ và vectơ = (x0– a ; y0 – b) là vectơ pháp tuyến cuả ∆
Do đó ∆ có phương trình là :
(x0 – a )(x – x0 ) + (y0 – b)(y – y0)
Phương trình (1) là phương trình tiếp tuyến của đường tròn
(x –a)2 + (y – b)2 = R2 tại điểm M0 nằm trên đường tròn.
- HƯỚNG DẪN LÀM BÀI
- Tìm tâm và bán kính của các đường tròn sau:
- a) x2+ y2– 2x – 2y – 2 = 0
- b) 16x2+ 16y2+ 16x – 8y – 11 = 0
- c) x2 + y2 – 4x + 6y – 3 = 0.
Hướng dẫn:
- a) Ta có : -2a = -2 => a = 1
-2b = -2 => b = 1 => I(1; 1)
R2 = a2 + b2 – c = 12 + 12 – (-2) = 4 => R = 2
- b) Tương tự, ta có : I (; ); R = 1
- c) I(2; -3); R = 4
- Lập phương trình đườơng tròn (C) trong các trường hợp sau:
- a) (C) có tâm I(-2; 3) và đi qua M(2; -3);
- b) (C) có tâm I(-1; 2) và tiếp xúc với đường thẳng d : x – 2y + 7 = 0
- c) (C) có đường kính AB với A(1; 1) và B(7; 5)
Hướng dẫn:
- a) Ta tìm bán kính R2= IM2 => R2 = IM = (2 + 2)2 + (-3 -32) = 52
Phương trình đường tròn (C): (x +2)2 + (y – 3)2 =52
- b) Đường tròn tiếp xúc với đường thẳng d nên khoảng cách từ tâm I tới đường thẳng d phải bằng bán kính đường tròn:
d(I; d) = R
Ta có : R = d(I; d) = =
Phương trình đường tròn cần tìm là:
(x +1)2 + (y – 2)2 = =>( x +1)2 + (y – 2)2 =
<=> 5x2 + 5y2 +10x – 20y +21 = 0
- c) Tâm I là trung điểm của AB, có tọa độ :
x = = 4; y = = 3 => I(4; 3)
AB = 2√13 => R = √13
=> (x -4 )2 + (y – 3)2 =13
- Lập phương trình đường tròn đi qua ba điểm:
- a) A(1; 2); B(5; 2); C(1; -3)
- b) M(-2; 4); N(5; 5); P(6; -2)
Hướng dẫn:
- a) Sử dụng phương trình đường tròn : x2– y2– ax – 2by +c = 0
Đường tròn đi qua điểm A(1; 2):
12 + 22 – 2a -4b + c = 0 <=> 2a + 4b – c = 5
Đường tròn đi qua điểm B(5; 2):
52 + 22 – 10a -4b + c = 0 <=> 10a + 4b – c = 29
Đường tròn đi qua điểm C(1; -3):
12 + (-3)2 – 2a + 6b + c = 0 <=> 2a – 6b – c = 10
Để tìm a, b, c ta giải hệ:
Lấy (2) trừ cho (1) ta được phương trình: 8a = 24 => a = 3
Lấy (3) trừ cho (1) ta được phương trình: -10b = 5 => b = – 0,5
Thế a = 3 ; b = -0.5 vào (1) ta tính được c = -1
Ta được phương trình đường tròn đi qua ba điểm A, B, C là :
x2 + y2 – 6x + y – 1 = 0
Chú ý:
Tâm I(x; y) của đường tròn đi qua ba điểm A, B, C là điểm cách đều ba điểm ấy, hay
IA = IB = IC => IA2 = IB2 = IC2
Từ đây suy ra x, y là nghiệm của hệ:
<=> I(3; )
Từ đây ta tìm được R và viết được phương trình đường tròn.
- b) Ta tính được I(2; 1), R= 5
Phương trình đường tròn đi qua ba điểm M(-2; 4); N(5; 5); P(6; -2) là:
(x – 2)2 + (y – 1)2 = 25 <=> x2 – y2 – 4x – 2y – 20 = 0
- Lập phương trình đường tròn tiếp xúc với hai trục tọa độ Ox, Oy và đi qua điểm M(2 ; 1)
Hướng dẫn :
Đường tròn tiếp xúc với hai trục tọa độ nên tâm I của nó phải cách đều hai trục tọa độ. Đường tròn này lại đi qua điểm M(2 ; 1), mà điểm M này lại là góc phần tư thứ nhất nên tọa độ của tâm I phải là số dương.
xI= yI > 0
gọi xI= yI = a. Như vậy phương trình đường tròn cần tìm là :
(2 – a)2 + (1 – a)2 = a2
a2 – 6a + 5 = 0 => a = 1 hoặc a = 5
Từ đây ta được hai đường tròn thỏa mãn điều kiện
+ Với a = 1 => (C1) => (x – 1 )2 + (y – 1)2 = 1
x2 + y2 – 2x – 2y + 1 = 0
+ Với a = 1 => (C2) => (x – 5 )2 + (y – 5)2 = 25
x2 + y2 – 10x – 10y + 25 = 0
- Lập phương trình của đường tròn tiếp xúc với các trục tọa độ và có tâm ở trên đường thẳng d : 4x – 2y – 8 = 0
Hướng dẫn :
Vì đường tròn cần tìm tiếp xúc với hai trục tọa độ nên các tọa độ xI ,yI của tâm I có thể là xI = yI hoặc xI = -yI
Đặt xI = a thì ta có hai trường hợp I(a ; a) hoặc I(-a ; a). Ta có hai khả năng:
Vì I nằm trên đường thẳng 4x – 2y – 8 = 0 nên với I(a ; a) ta có:
4a – 2a – 8 = 0 => a = 4
Đường tròn cần tìm có tâm I(4; 4) và bán kính R = 4 có phương trình:
(x – 4 )2 + (y – 4)2 = 42
x2 + y2 – 8x – 8y + 16 = 0
+ Trường hợp I(-a; a):
-4a – 2a – 8 = 0 => a =
Ta được đường tròn có phương trình: